

.

Improvement of Design Specifications with Inspection and Testing

Dietmar Winkler, Bernhard Riedl, Stefan Biffl
Vienna University of Technology, Institute of Software Technology,

Karlsplatz 13, A-1040 Vienna, Austria
{ Dietmar.Winkler, Bernhard.Riedl, Stefan.Biffl } @qse.ifs.tuwien.ac.at

Abstract

Inspection and testing are common verification and

validation (V&V) approaches for defect detection and
removal in the software development processes. Test-
ing approaches require executable code, typically
available in later life-cycle phases. Software Inspec-
tion is a defect detection technique applicable to early
life-cycle documents, e.g., during design. The Usage-
Based Reading (UBR) technique approach is a struc-
tured method for inspection support.

In this paper we introduce a testing variant, usage-
based testing (UBT-i) that integrates testing scenarios
and inspection techniques. UBT-i is a paper based
testing approach (i.e. a desk test without the need for
executable software) applicable to design specifica-
tions. We present an initial empirical study on defect
detection effectiveness and efficiency with respect to
several defect severity classes and defect locations
(code or design). Main results of the study are (a) UBR
and UBT-i perform similarly regarding both effective-
ness and efficiency and (b) the approaches focus on
different defect classes regarding defect severity and
defect location.

Key words: Verification & Validation, Software In-
spection, Usage-Based Testing, Software Product Im-
provement.

1. Introduction

The delivery of high-quality software products is a
major goal in software engineering. An important as-
pect is to achieve a very low number of defects in a
software product based on a mature software and qual-
ity assurance development process. Following the
software life cycle approach, Sommerville identifies
five steps [20]: (a) requirements definition, (b) systems
and software design, (c) implementation and unit test-
ing, (d) integration and system testing, and (e) opera-

tion and maintenance. Concerning individual steps, the
cost of defect repair increases rapidly, the later a defect
is detected, and can be avoided [1] with additional
activities in previous phases. In this paper we investi-
gate software inspection and introduce a new testing
variant, usage-based test with inspection (UBT-i) for
defect detection in early stages of software develop-
ment.

Software inspection is a structured approach for de-
fect detection in written text documents, e.g., design
specifications, applying reading techniques for inspec-
tion assistance. Therefore, software inspection does
not require executable code. Reading techniques pro-
vide a structured process of individual reading ap-
proaches, using a checklist (CBR), use cases (UBR),
etc. Several studies exist on the investigation of CBR
and UBR reading techniques [1][10][21][22][23],
based on the original version of Fagan’s inspection [7].

Software testing, i.e., black-box and white-box test-
ing scenarios, are common methods for quality im-
provement in implementation and testing phases. Tra-
ditional testing approaches require executable code to
compare outcomes of the software product to the
specification document based on predefined sets of test
cases. The application of tests assumes the correctness
and completeness of requirements and design docu-
ments. Critical defects in code documents may require
rework of the specification document in case of an
error in the specification phase. Therefore, the applica-
tion of software testing depends on the existence of
given requirements, test cases according to these re-
quirements, and executable code. Once, detecting a
defect in a testing scenario, testers have to locate the
origin of the defect, because no detailed information
exists on the defect location applying black-box test-
ing. Therefore, additional effort is necessary for loca-
tion and correction purposes.

Our testing approach (UBT-i) supports written text
documents (design specifications) and a hardcopy of
source code as well applying a desk test. Concerning

source code documents, the control flow of the code
fragments are stimulated mentally in order to find and
locate defects.

Test case generation is part of UBT-i. Therefore,
UBT-i provides defect detection and location in early
stages of software development and test case genera-
tion regarding expert-prioritized use cases. In contrast
to usage-based testing [1], we merge test case genera-
tion and desk test execution according to an individual
order of expert-ranked use cases, following four steps:
(a) select use case with top priority, (b) generate test
cases, (c) apply test cases and report defects, and (d)
select the next use case until time is up or total cover-
age of all use cases.

This paper presents the results of an initial empiri-
cal study in an academic environment [6] to investigate
the impact of UBR and UBT-i with respect to defect
detection according to time measures, i.e. efficiency
and effort, and inspection performance, i.e. the number
of defects found during method application.

The experiment environment includes a taxi man-
agement system, consisting of a requirements docu-
ment with use case notation and a design specification
regarding a central and driver part, associated by a
communication link. We apply existing basic material,
already used in several experiments (see [26][23][22])
to provide comparability to previous experiments, and
to keep the preliminary effort for experiment prepara-
tion and setup reasonable.

The reminder of this paper is structured as follows.
Section 2 describes related work on usage-based test-
ing and software inspection. Section 3 points out re-
search hypotheses, section 4 outlines the experiment
settings, Section 5 presents the results of the study, and
section 6 discusses the results. Finally, section 7 con-
cludes and describes directions for further research.

2. Usage-Based Reading and Testing

Software inspection is a team-oriented, static verifi-
cation and validation (V&V) approach for software
product improvement regarding software design speci-
fications. Typical software inspections in industrial
practice consist of four major steps: (a) inspection
planning, (b) defect detection, (c) defect collection,
and (d) defect repair [3]. In this paper we focus on
individual defect detection and defect collection using
nominal teams.

We separate experiment preparation effort, includ-
ing document and checklist preparation as well as gen-
eration and prioritization of use cases (performed by
experts) and individual software inspection effort (per-
formed by study participants).

Inspectors perform an individual preparation phase,
according to the reading technique applied and an in-
dividual inspection phase. Reading techniques aim to
support inspectors during inspection process. In our
paper we focus on Usage Based Reading (UBR). In-
spectors use expert prioritized use cases, apply them
sequentially to the document under inspection and re-
cord candidate defects. Use case prioritization is part
of the overall preparation phase performed by experts,
who are familiar with the application domain. This
prioritization task is not considered in our evaluation
of inspection effort. The application of prioritized use
cases provides (a) a set of sorted use cases, according
to their importance and (b) an active guidance through
the inspection process [26]. Primary studies showed a
better performance of UBR compared to checklist-
based approaches [3][22][23].

Inspectors, applying UBR, perform the following
sequence of steps:
1. Choose a use case with highest priority according

to use case rating.
2. Apply the use case to the design specification and

record candidate defects. Candidate defects are
subjectively classified defects, rated by individual
inspectors. The design specification was seeded
with defects by experts. Candidate defects which
agree with seeded defects are considered as
matched defects.

3. Continue with the next use case until time is up or
total use case coverage.
Because inspectors traverse the document under in-

spection several times according to a set of use cases,
they find defects and they know the location of the
defect as well as a common characteristic for all in-
spection approaches.

Another useful approach for software quality im-
provement is testing [11]. The traditional software
testing process uses a set of test cases based on a de-
sign specification and executable code. Testing ap-
proaches, like black-box testing, enable defect detec-
tion by comparing test results against the expected
behavior, i.e. the specification. Test cases are clustered
according to their expected behavior using equivalence
classes, i.e. selecting one member of a set of test cases
promising to achieve similar test results (e.g. test case
success, border cases or exceptional cases) to limit the
number of test cases. Nevertheless, there are very few
possibilities to locate defects during the test process
without deeper knowledge of the code documents.
After performing tests, software engineers have to lo-
cate defects regarding the test results. Several studies
have been performed to investigate testing approaches
[10] and have compared testing and inspection [1][19].
Andersson et al. introduced Usage-Based Testing

(UBT) [1] concerning expert prioritized use cases and
test cases, which were applied to code documents.
These artifacts are the basic material for UBT. Addi-
tional effort is necessary to set up and prioritize use
cases and test cases.

Concerning the software life-cycle, UBR is origi-
nally located in early software development phases and
UBT is typically located in the implementation phase
or later. We assume an improvement of testing, based
on a modification of UBT including inspection meth-
ods. Our approach includes a twofold benefit: (a)
UBT-i may be applied to design specifications and
code documents as well performing a desk test, and (b)
the generation of test cases is an integral part of the
testing process. Thus, additionally to defect detection,
test case generation is an additional outcome of UBT-i.
Executing our UBT-i approach, inspectors perform
four major steps:
1. Choose the first prioritized use case.
2. Find equivalence classes and test cases according

to the selected use case, applying guidelines for
equivalence class derivation.

3. Apply test cases regarding use cases and record
candidate defects.

4. Continue at step 1 until overall use case and docu-
ment coverage or reached time limit.
One advantage of UBT-i is the knowledge of the

defect location in the design specification as well as in
the source code document.

3. Research Questions

The main focus of this paper is the investigation of
performance as well as time variables for UBR and
UBT-i. UBR focuses on design specification using
guidelines and use cases for defect detection in early
software development phases [23][26]. Usage-based
testing is an approach for defect detection for code
documents and design specification [1]. UBT fits to
implementation phases or later in the software devel-
opment process. We introduce a new testing variant,
UBT-i, merging the benefits of UBT and UBR. UBT-i
is a desk test, without the requirement for executable
code, and therefore, enables application to text docu-
ments as well. During desk testing, inspectors derive
equivalence classes and test cases from use cases and
design specification and aim to find defects in early
phases of software development. In this paper we fo-
cus on inspection effort, effectiveness, efficiency, and
some basic approaches on team composition.

3.1. Variables

We define dependent and independent variables.
The independent variable is the technique applied, i.e.
reading technique UBR and usage-based testing with
inspection (UBT-i). UBR applies an expert ranked
order of predefined use cases to traverse the document
under inspection several times. UBT-i uses expert pri-
oritized use cases as well (same basic material), finds
equivalence classes and test cases, and applies them on
the software artifacts. We control the influence of in-
spector capability by randomly assigning inspectors to
reading techniques and testing approaches.

Dependent variables capture the performance of the
individual technique applied during the experiment
proceeding. Following a standard practice of empirical
software engineering, we focus on performance meas-
ures and time variables. Additionally, we introduce a
team comparison to investigate the influence of ran-
domly combined individuals to teams of up to 6 mem-
bers on inspection performance.

Performance measures are effectiveness, i.e. the
number of found matched defects regarding the overall
number of seeded defects and efficiency, i.e. the num-
ber of defects found per hour, according to three defect
severity classes: (a) critical defects (class A), major
defects (class B), and minor defects (class C). Critical
defects mean a heavy adverse effect on functionality
which will appear very often (highest risk). Major de-
fects contain important rarely used defects or less im-
portant often used defects (medium risk) and minor
defects are neither crucial nor very important (low
risk).

For evaluation purposes we focus on critical de-
fects, important defects (class A + class B) and all
matched defects. The main time variable is the overall
effort used for a technique (in minutes).

3.2. Hypotheses

In the experiment we observe the performance of
inspectors applying UBR and UBT-i. As the main goal
of this paper we investigate research hypotheses re-
garding effort, effectiveness, efficiency, and team
composition and their influence on three different de-
fect severity classes. In more detail, we evaluate the
following hypotheses.

Inspection effort includes preparation and execution
time of UBR and UBT-i. We do not include the overall
preparation phase, i.e. generation of use cases and pri-
oritization, because these preliminary tasks are similar
for both approaches.

H1: Effort (UBR) < Effort (UBT-i): We expect an
overall higher effort for UBT-i inspectors than for

UBR inspectors. In more detail, UBR inspectors take
longer to traverse the documents following their tech-
nique than UBT-i users. But we expect a higher effort
for the testing approach, because of two additional
tasks applying this method. Based on prioritized use
cases inspectors have to find equivalence classes and
generate test cases according to every use case sequen-
tially. Applying test cases to the document under in-
spection, inspectors find defects and report them. Con-
cerning UBR, inspectors apply use cases to the design
specification without performing these individual
tasks. Beside from defect detection, UBT-i achieves a
set of test cases for reuse purposes in the implementa-
tion and testing phase.

Effectiveness is the number of defects found con-
cerning different severity classes, in relation to all
seeded defects in these classes and document locations
(i.e. design specification and source code documents).

H21: Effectiveness (UBR) > Effectiveness (UBT-i):
Regarding the comparison of UBR and UBT, Anders-
son et al. [1] found significantly higher effectiveness
of inspectors applying UBR (replicated hypothesis).
Note that the UBT group does not have to perform
additional tasks but applies given test cases to the de-
sign document. In our testing approach (UBT-i), in-
spectors have to create test cases as an additional task.
Because of an overall upper time limit, the inspectors
might spend less time for their defect detection task.
Therefore, we expect stronger differences and UBR to
be more effective than UBT-i.

H22: Effectiveness_location (UBT-i) > Effective-
ness_location (UBR). Because UBR focuses on design
specifications (written text documents) and UBT-i
focuses on source code, we expect a higher effective-
ness at UBT-i, concerning defect detection rates in
code documents. We apply a similar argument to UBR,
that UBR users find more defects in design specifica-
tions.

Efficiency combines inspection performance (effec-
tiveness) and inspector time variables (effort). We de-
fine efficiency as the number of defects found in a time
interval, i.e. defects per hour. Additionally, we regard
different defect severity classes.

H31: Efficiency (UBR) > Efficiency (UBT-i): Due to
additional tasks of UBT-i, we expect a lower effi-
ciency of inspectors applying UBT-i, because UBT-i
inspectors have to spend additional time on finding
equivalence classes and test case generation.

Nominal teams: We assume a higher effectiveness
concerning nominal teams involving both inspection
approaches, in relation to a team applying a uniform
technique, because of individual focus of every tech-
nique.

H41: Effectiveness (Mix) > Effectiveness (uniform):
In our evaluation, we use a uniform distribution of
UBR and UBT-i for even team size and one additional
UBR inspectors for odd team size to emphasize soft-
ware inspection (see table 1 for details).

Because of individual defect detection approaches,
we expect some kind of synergy effect applying teams.
UBR focus on design specifications and UBT-i seems
to pay more attention on source documents. Following
this approach, inspection teams must involve UBR and
UBT-i as well. Therefore, we use an almost uniform
team sampling approach. Table 1 displays team com-
position in more detail (we use the short-cut R for
UBR and T for UBT-i).

Table 1. Team Composition

Team Size UBR UBT-i UBR/UBT-i
1 1R 1T 1R
2 2R 2T 1R1T
3 3R 3T 2R1T
4 4R 4T 2R2T
5 5R 5T 3R2T
6 6R 6T 3R3T

In this paper we set up an upper team size of 6 team

members [3], summarizing all matched defects found
by the individuals. Note, that we count seeded defects
only once, even if the defect was found several times
by different members of the nominal team. To achieve
comparable results we randomly build 10 teams and
calculate mean value and standard deviation.

4. Experiment description

The initial study was conducted at Vienna Univer-
sity of Technology in academic environment in De-
cember 2004. This study is an extension of previous
studies [26][6], concerning usage based reading tech-
niques and a modified version of replicated experiment
conducted at Lund University, Sweden [1][22][23]. In
this section we will briefly describe key aspects of the
experiment proceeding, software artifacts and experi-
ment participants.

4.1. Experiment Proceeding

The experiment consists of three major steps: (a)
experiment preparation, (b) experiment execution, and
(c) data evaluation.

During the experiment preparation phase, experts
had to prepare the software artifacts, i.e. requirements
document, design specification including interspersion
of defects, construction and prioritization of use cases,

and generation of code documents, reflecting program
functionality. Furthermore, several guidelines and sup-
porting documents, e.g. questionnaires had to be pro-
vided.

The experiment execution phase was performed in
three major steps: a training and preparation phase,
individual application of the method, and data submis-
sion. Inspectors got an overview of the application
area (45 min) and the inspection process (45 min) and
got familiar with the software artifacts. Afterwards the
inspectors applied the randomly assigned inspection
approaches to the documents under inspection (300
min) and passed their results to a database.

After data submission experts mapped all candidate
defects, i.e. defects noted by the individual inspectors,
to real defects, i.e. defects seeded by experts. The data
were checked for correctness and consistency. We
excluded data from inspectors who did not follow the
experiment process properly. Note, that multiple can-
didate defects that refer to the same seeded defect was
counted only once at the first clock time of notation.
For statistical evaluation purposes, we use the Mann-
Whitney test at a significance level of 95%.

4.2. Software Artifacts

The artifacts in this initial study describe a taxi
management system including a central and driver part
of the system. We do not separate both parts in our
evaluation.

The document framework consists of (a) a textual
description of requirements and use case definitions,
(b) a design specification, containing seeded defects,
(c) source code documents, (d) guidelines for experi-
ment proceeding, and (e) questionnaires for inspector
feedback on inspector capability and reading technique
approach used.
• The textual requirements document spans 8 pages

including 2 component diagrams and is assumed
to be accurate.

• The design document describes an overview of the
software modules and their context including an
internal (relationship between two or more mod-
ules) and an external representation (relationship
between the user and the system). The design
documents consist of 8 pages (including approxi-
mately 2400 words, 2 component diagrams and 2
UML diagrams). Furthermore, we provide priori-
tized use case descriptions containing 24 use cases
from user viewpoint and an overall number of 23
sequence diagrams.

• We provide source code (some 1400 lines of
code) and a 9 page method description using
JavaDoc.

• Guidelines support the inspectors in performing
the individual tasks. We introduce questionnaires
to achieve knowledge of inspector capability (ex-
perience questionnaire) and feedback of the indi-
vidual inspection approaches.

• The document package (design specification and
source code documents) contains 60 seeded de-
fects (27 defects (45%) in the design document
and 33 defects (55%) in the source code docu-
ments) according to three different defect severity
classes. Concerning different severity levels, the
design specification and the source code, contains
29 (49%) critical (class A) defects, 24 (24%) ma-
jor (class B), and 7 (12%) minor (less important,
class C) defects. Table 2 presents the nominal
numbers of seeded defects according to defect se-
verity classes and document types.

Table 2. Seeded Defects according to de-

fect severity classes

 Number of defects
 Design Source Sum
Critical (class A) 10 19 29
Major (class B) 12 12 24
Minor (class C) 5 2 7
Summary 27 33 60

4.3. Subjects

The subjects in this initial study were 29 software
engineering students. UBR and UBT-i were assigned
randomly to the experiment participants to control the
influence of inspector capability. During the experi-
ment, a supervisor supported the participants to ensure
the compliance to the experiment proceeding and the
given instructions. The experiment was fully integrated
in the practical part of course for software quality as-
surance to learn key aspects of software product im-
provement in early stages of software development.

We assigned 15 inspectors (52%) to Usage Based
Reading (UBR) and 14 inspectors (48%) to Usage
Based Testing with Inspection (UBT-i).

5. Experiment Results

In this section we present the results of the empiri-
cal study concerning effectiveness, efficiency, and
some preliminary results of nominal team aspects.

5.1. Effort

Effort is the overall session duration, involving in-
dividual preparation and execution time. In this

evaluation, we summarize both time intervals for ef-
fort, because there is no additional effort within the
inspection/testing execution. Table 3 displays mean
values and standard deviation of inspection effort.

Table 3. Inspection Effort in Minutes

 UBR UBT-i
Mean 272.5 268.8
Std.Dev. 38.0 29.1

Both approaches have on average similar effort. We

do not recognize a significant difference concerning
inspection effort, but there is somewhat higher effort
for UBR but also a higher standard deviation.

5.2. Effectiveness

Effectiveness is the number of defects found in rela-
tion to the overall number of seeded defects per defect
class. The experiment setup consists of 60 defects (27
defects in the design document and 33 defects in the
source code). Concerning defect severity classes, we
pay attention to 29 critical defects (class A) and 53
important defects (class A and class B defects).

We do not observe any significant difference con-
cerning all matched defects regarding document loca-
tion (design specification and source code) but we ob-
serve a somewhat higher effectiveness for UBR in-
spectors (mean values: 38.7 (UBR) and 34.3 (UBT-i)).
Further investigations show significant differences
concerning critical (class A) defects and source code
documents.

Technique

UBT-iUBR

E
ffe

ct
iv

en
es

s,
 R

is
k

A
 [%

]

100

80

60

40

20

0

Location

 Design Document

 Source Code

Figure 1. Effectiveness according to

critical defects and document location

Figure 1 depicts the overall effectiveness for critical
defects according to document location. Surprisingly,

UBR approaches achieve significantly higher effec-
tiveness with respect to critical defects in source code
documents.

Table 4. Effectiveness, Source Code

 Defect class UBR UBT-i
Class A 30.2 21.3
Class A+B 35.3 29.7

M
ea

n

All defects 33.7 28.4
Class A 10.8 10.0
Class A+B 11.4 12.2

St
d.

D
ev

All defects 11.0 11.4

Table 4 presents the summarized results for source

code documents. Nevertheless, effectiveness concern-
ing UBR is somewhat higher at every defect severity
class and for both document locations.

5.3. Efficiency

Similar to effectiveness, we recognize a somewhat
higher efficiency concerning UBR approaches, but we
do not notice any significant difference using the
Mann-Whitney Test at a significance level of 95%.

Table 5 displays a summary concerning mean value
and standard deviation of efficiency regarding matched
defects.

Table 5. Efficiency, Matched Defects

 Defect Class UBR UBT-i
Class A 2.4 2.2
Class A+B 4.7 4.4

M
ea

n

All Defects 5.2 4.8
Class A 0.8 1.2
Class A+B 1.6 2.3

St
d.

D
ev

All defects 1.8 2.7

Again, we find a significant difference concerning

critical defects and source code documents. Table 6
gives a summary of our findings with respect to source
code documents.

Table 6. Efficiency, Source Code

 Defect UBR UBT-i
Class A 1.3 1.0
Class A+B 2.4 2.1

M
ea

n

All defects 2.5 2.2
Class A 0.4 0.6
Class A+B 0.8 1.0

St
d.

D
ev

All defects 0.8 1.0

Using the Mann-Whitney test to observe statistical
significance levels, we notice a significant difference
concerning critical (class A) defects.

Table 7. P-Values Efficiency, Source

Code

 Class A Class
A+B

All de-
fects

UBR / UBT-i 0.040 (S) 0.230 (-) 0.222 (-)

Table 7 presents the p-values of efficiency for

source code documents according to defect severity
classes. We observe a significant difference for class A
(critical) defects.

5.4. Nominal Teams

To investigate the team effect of nominal teams, we
merged individuals applying the same and different
inspection approaches randomly. Table 1 displays the
setup for team composition. We consider a nominal
team as a collaboration of two or more members with-
out interaction [4][5].

Number of Inspectors

654321

Ef
fe

ct
iv

en
es

s
[%

]

80

70

60

50

40

30

UBR

UBT-i

UBR/UBT-i Mix

Figure 2. Effectiveness for Nominal

Teams.

Figure 2 displays effectiveness of nominal teams

concerning a twofold evaluation task: (a) presents
teams consisting of uniform inspection approaches, i.e.
all team member applied UBR or UBT-i, and (b) de-
scribes the mix of both approaches, as described in
section 3.2. We observe a continuous increasing num-
ber of effectiveness, because inspectors detect different
defects (Note, that we count defects only once per
team). UBR teams achieve the best performance,

UBT-i teams perform worst; our randomly selected
sample of both approaches draws near to UBR. Con-
cerning efficiency, we observe a similar effect.

Table 8. Mean Values acc. to Effective-
ness and Efficiency, Nominal Teams.

Effectiveness Efficiency No
Insp. UBR UBT-i Mix UBR UBT-i Mix

1 39.8 34.4 39.5 5.2 4.4 5.2
2 53.4 49.6 53.5 3.5 3.2 3.4
3 68.0 55.9 65.8 2.8 2.4 3.0
4 74,3 61.4 69.9 2.3 2.1 2.3
5 74.1 69.1 74.2 2.0 1.8 1.9
6 76.7 71.0 76.7 1.7 1.6 1.7

6. Discussion

In this section we summarize the empirical results
from our experiment concerning effort, effectiveness,
efficiency, and team composition. Analyzing the re-
sults we derive the following implications for the com-
parison of UBR and UBT-i.

Effort: The results showed no significant overall

difference concerning UBR and UBT-i. One reason
might be some kind of a group effect for overall in-
spection duration, because we set up an upper limit of
300 minutes. Further investigation on the document
and use case coverage is necessary. Because UBT-i
performed an additional task, finding of equivalence
classes according to given guidelines for equivalence
class derivation and generation of test cases, only a
subset of the prioritized use cases might be considered.

In summary the hypothesis H1, that UBR need less
effort than UBT-i must be rejected.

Effectiveness: We define effectiveness as the ratio

of matched defects with respect to all seeded defects at
the observed defect class (different severity levels) and
document location (source code and design docu-
ments). We recognize significant differences in ob-
serving source code documents and critical defects.
Additionally, effectiveness concerning UBR is some-
what higher than UBT-i for all evaluation tasks, but we
do not recognize any significant difference.

Therefore, we have to reject our replicated hypothe-
ses H21, that Effectiveness (UBR) > Effectiveness
(UBT-i). We imply an equivalent application of UBT-i
with respect to UBR including the additional benefit of
generated test cases at UBT-i. One possible problem
might be the document coverage, because we didn’t
observe document coverage, i.e. did the inspectors
apply all use-cases or did they run out of time.

We also have to reject hypothesis H22, that UBT-i
performs better regarding UBR according to document
location for critical defects. Because of prioritized use
cases inspectors focus on critical and important defects
first. Another reason for this effect might be the desk
test approach of UBT-i because inspectors do use a
compiler (i.e. execute program code) to find defects
but have to “compile” mentally, i.e. stimulating pro-
gram control flow.

Efficiency: Efficiency is the number of defects

found regarding predefined time intervals. In our ini-
tial study we investigated defects found per hour.
Similar to effectiveness we observe a significant dif-
ference concerning critical (class A) defects and source
code documents. Furthermore, our results don’t show
any significant differences regarding the hypothesis.
Note again, that UBR inspectors achieve a somewhat
higher efficiency than UBT-i. Our hypothesis, UBR
performs significantly better than UBT-i, according to
efficiency, must be rejected.

We suppose similar reasons for these results ac-
cording to effectiveness. Because efficiency includes
time values (i.e. defects found per time interval), the
measured value might be supported as well.

Team composition: Because different inspection

approaches focus on different document locations, i.e.
design specification and source code, we expect a bet-
ter overall performance concerning effectiveness and
efficiency. Therefore, we mixed teams up to 6 team
members, using a uniform inspection approach distri-
bution and control groups applying the same inspec-
tion approach. We observe the best performance for
UBR and the worst overall performance for UBT-i.
Our team mix is near to UBR but somewhat lower.
Following these results we have to reject our hypothe-
sis H41. Investigating the results of UBR and UBT-i
we assume a similar effect on team composition. An-
other possible reason might be our number of samples
(i.e. 10 nominal teams concerning each team composi-
tion strategy), which influences team composition and
results of effectiveness and efficiency.

7. Conclusion and Further Work

Inspection and testing are important approaches in
software engineering practice addressing the reduction
of defects in software products. Software inspection
focuses on design specifications in early phases of
software development and traditional testing ap-
proaches focus on implementation phases or later.
Therefore, we introduced a new testing variant, UBT-i,
integrating benefits of software inspection and soft-

ware testing. UBT-i is a desk test and – in contrast to
testing approaches – doesn’t require executable code.
Additionally, UBT-i inspectors generate equivalence
classes and test cases during inspection proceeding.

This paper presents the basic description of this new
testing approach and the results of an initial study,
performed at Vienna University of Technology, ac-
cording to effectiveness, efficiency and some basic
ideas on team composition.

The main findings of this study were: (a) no signifi-

cant differences concerning all matched defects ac-
cording to effectiveness and efficiency, (b) significant
differences for critical defects (class A) in source code
documents, and (c) all performance measures are
somewhat higher for UBR than for UBT-i, concerning
defect severity classes and defect location.

Further work is necessary to investigate inspector

capability on UBT-i in the experiment environment
and document coverage of individual inspection ap-
proaches to achieve deeper knowledge of the impact of
additional tasks, i.e. finding of equivalence classes and
test cases, applying UBT-i. Furthermore, we have to
replicate our initial study to verify the results involving
a higher number of participants to improve external
validity.

We invite researchers with interest in empirical
studies in V&V to share their interests and insights to
replicate our initial study.

8. References

[1] Andersson C., Thelin T., Runeson P., Dzamash-
vili N.: “An experimental evaluation of inspection
and testing for detecting of design faults”, IS-
ESE’03 – International Symposium of Empirical
Software Engineering, pp. 174-184, 2003.

[2] Basili V.R., Shull F., Lanubile F.: “Building
Knowledge through Families of Experiments”,
IEEE Trans. Software Eng., vol. 25, no. 4, pp.
456-473, July/Aug. 1999.

[3] Biffl St.: "Software Inspection Techniques to sup-
port Project and Quality Management", Shaker
Verlag, 2001, ISBN: 3-8265-8512-7.

[4] Biffl St., Gutjahr W.: “Influence of Team Size
and Defect Detection Technique on Inspection
Effectiveness”, Seventh International Software
Metrics Symposium, IEEE, 2001.

[5] Biffl St., Halling M.: “Investigating the defect
detection effectiveness and cost benefit of nomi-
nal inspection teams”, IEEE Transactions on
Software Engineering 29(5) (2003), pp. 385–397.

[6] Biffl S., Winkler D., Thelin T., Höst M., Russo
B., Succi G.: “Investigating the Effect of V&V
and Modern Construction Techniques on Improv-
ing Software Quality”, Poster presented at ISERN
2004.

[7] Fagan M.: “Design and Code Inspections To Re-
duce Errors In Program Development”, IBM Sys-
tems J., vol. 15, no. 3, 1976, pp. 182-211.

[8] Fusaro P., Lanubile F., Visaggio G.: “A Repli-
cated Experiment to Assess Requirements Inspec-
tion Techniques”, Empirical Software Eng.: An
Int’l J., vol. 2, no. 1, pp. 39-57, 1997.

[9] Gilb T., Graham D.: “Software Inspection”, Ad-
dison-Wesley, 1993.

[10] Juristo N., Moreno A. M., Vegas S.: "A Survey on
Testing Technique Empirical Studies: How Lim-
ited is Our Knowledge", Proceedings of the 1st
International Symposium on Empirical Software
Engineering, pp. 161-172, 2002.

[11] Karner C., Falk J., Nguyen H.Q.: „Testing Com-
puter Software“, Wiley, 1999, ISBN 0-471-
35846-0.

[12] Laitenberger O., Atkinson C.: “Generalizing Per-
spective-based Inspection to handle Object-
Oriented Development Artifacts”, Proc. of the Int.
Conf. on Software Engineering, 1999.

[13] Laitenberger O., DeBaud J.-M.: “An encompass-
ing life cycle centric survey of software inspec-
tion”, Journal of Systems and Software, vol. 50,
no. 1, 2000, pp. 5-31.

[14] Parnas D., Lawford M.: “The role of inspection in
soft-ware quality assurance”, IEEE Trans. on SE,
vol. 29(8), August 2003, pp. 674-676.

[15] Porter A., Votta L.: “Comparing Detection Meth-
ods for Software Requirements Inspections: a
Replicated Experiment using professional sub-
jects”, Empirical Software Engineering Journal,
vol. 3, no. 4, 1998, pp. 355-379.

[16] Porter A., Votta L., Basili V.: “Comparing Detec-
tion Methods for Software Requirements Inspec-
tions: a Replicated Experiment”, IEEE Transac-
tions on Software Engineering vol. 21, no. 6, pp.
563-575, June 1995.

[17] Sandahl K., Blomkvist O., Karlsson J., Krysander
C., Lindvall M., Ohlsson N.: “An Extended Rep-
lication of an Experiment for Assessing Methods
for Software Requirements Inspections”, Kluwer
Academic Publishers, 1998.

[18] Shull F., Basili V., Boehm B., Brown W., Costa
P., Lindvall M., Port D., Rus I., Tesoriero R.,
Zelkowitz M.: "What We Have Learned About
Fighting Defects", IEEE Metrics 2002.

[19] So S.S., Cha S.D., Shimeall T.J., Kwon Y.R.: "An
Empirical Evaluation of Six Methods to Detect
Faults in Software", Software Testing, Verifica-
tion and Reliability, 12(3):155-172, 2002.

[20] Sommerville I.: “Software Engineering”, 6th Edi-
tion, Addison-Wesley, 2001.

[21] Thelin T, Andersson C., Runeson P., Dzamash-
vili-Fogelström N.: “A Replicated Experiment of
Usage-Based and Checklist-Based Reading“,
Proceeding of 10th Int. Symp. on Software Met-
rics, 2004.

[22] Thelin T., Runeson, P., Regnell B.: “Usage-
Based Reading – An Experiment to Guide Re-
viewers with Use Cases” Information and Soft-
ware Technology, vol. 43, no. 15, pp. 925-938,
2001.

[23] Thelin T., Runeson, P., Wohlin, C.: “An experi-
mental comparison of usage-based and checklist-
based reading”, IEEE Transaction on Software
Engineering, 29(8), pp. 687-704, 2003.

[24] Thelin T., Runeson, P., Wohlin C., Olsson, T.,
Andersson, C.: “How much information is needed
for usage-based reading? – A series of experi-
ments”, International Symposium on Empirical
Software Engineering (ISESE’02), 2002.

[25] Westland J. C.: “The cost of errors in software
development: evidence from industry”, The Jour-
nal of Systems and Software 62, 1-9. (2002).

[26] Winkler D., Halling M., Biffl St.: “Investigating
the effect of expert ranking of use cases for de-
sign inspection”, Euromicro Conference, Rennes,
France, IEEE Comp. Soc, 2004.

